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ABSTRACT

IEEE 802.11 (WiFi) only has two modes of trust—complete
trust or complete untrust. The lack of nuance leaves no room
for sensors that a user does not fully trust but wants to con-
nect to their network, such as a WiFi sensor. Solutions exist,
but they require advanced knowledge of network adminis-
tration. We solve this problem by introducing a new way
of modulating data in the latency of the network, called La-
tency Shift Keying. We use specific characteristics of the
WiFi protocol to carefully control the latency of just one
device on the network. We build a transmitter, receiver, and
modulation scheme that is designed to encode data in the
latency of a network. We develop an application, Wicket,
that solves the WiFi trust issue using Latency Shift Keying
to create a new security association between an untrusted
WiFi sensor and a wired device on the trusted network. We
evaluate its performance and show that it works in many
network conditions and environments.
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1 INTRODUCTION

Low-cost Internet of Things (IoT) devices are plagued with
security issues, especially in homes where best security prac-
tices are not always followed. IoT devices have been used
as backdoors into private networks [9, 10] and utilized as
botnets in massive DDOS attacks [25]. As the number of IoT
devices deployed increases, as they are forecasted to [14],
this problem will grow even worse.

The exploits are possible in part because of the design of
WiFi’s security. Traditionally, when you connect a device to
your WiFi network by providing your network name and
password, you give the device full access to your network.
One insecure device can compromise a whole network [16].
WiFi has only two modes of trust: complete trust or complete
untrust. What if a user wants to have partial trust of the device?
Many IoT sensors, such as temperature sensors or air quality
sensors, do not require all the capabilities of WiFi and should
not get full access to a WiFi network to periodically send
small amounts of data. This coarse grain access control is
akin to having a stranger come to your house and having only
two options: not answering the door or answering the door
and giving the person the keys to your house. Regrettably,
partial trust or partial communication is not possible with
standard WiFi, and this is where our work innovates.

This paper introduces a novel way of communicating be-
tween unassociated WiFi devices and a trusted WiFi network
without connecting the unassociated WiFi devices to the
network. Our solution requires no additional hardware or
changes to existing hardware—it is implemented purely in
software and uses standard WiFi. Our method creates an
air gap for safety between an untrusted IoT sensor and a
secured network allowing communication to only go one
direction and only when the trusted WiFi network needs to
receive data. This method drastically limits the ability of a
compromised WiFi device to affect the secured network. Our
solution functions as a wicket gate [3], as shown in Figure 1.
A wicket gate is a smaller door incorporated into a larger city
or castle gate used in the Middle Ages. It allows for more fine-
grain passage through the gates. Rather than opening the
large and heavy main gate to let a few travelers in, leaving
a community vulnerable to potential attacks while the gate
is open, the wicket door can be used. Our solution provides
similar benefits. It adds a secondary form of communication
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Figure 1: An example of a wicket gate [32], to the left
of the main gate, used in the Middle Ages to provide
fine-grain access to city or castle gates.

to WiFi that is designed for IoT sensor readings that have a
different security association than normal WiFi.

Other solutions exist, such as network partitioning using
separate WiFi networks (discussed in more detail in Sec-
tion 2), providing some of the same benefits. However, these
solutions have significant drawbacks. They require addi-
tional hardware or advanced network configuration of a
WiFi network and advanced knowledge of network opera-
tion, which makes it challenging to deploy to an application
for a typical consumer. Our solution innovates by requiring
no additional hardware while still utilizing the main WiFi
network, making it very easy to use. A user of our system
does not have to configure or adjust anything about their
network. Our system is essentially an overlay on top of their
existing network.

Our work forms a new communication channel between
an untrusted/unassociated WiFi device and a device on the
trusted network. The device on the trusted network can be
wireless or wired, but for illustrative purposes, we will as-
sume it is wired. On this new communication channel, the
untrusted device can send data to the device on the secure
and trusted network. However, direct communication be-
tween an unassociated WiFi device and a device on a trusted
network should not be possible because the communication
is encrypted. The critical insight into making this communi-
cation channel is that though the unassociated device can not
directly send data to the private network, it can still affect the
wireless environment. A wired device on the private network
can not directly receive data from the untrusted device, but
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it can detect changes in the wireless environment. We achieve
communication by having the untrusted device strategically
and surgically jam the WiFi communication channel, causing
the latency of just one device to increase momentarily. The
pattern in which the unassociated device jams the network
conveys information. A device on the trusted network detects
the changes in network latency and receives the data. We
call this method Latency Shift Keying (LSK). LSK provides
a new communication channel that can be set up between a
device in the trusted network and an untrusted/unassociated
WiFi device.

This paper presents a novel form of communication through
changes in latency that allows for data to be sent by a device
without fully trusting the device. Our new communication
channel allows someone to set up a WiFi sensor and have it
send data without giving that device full access to the WiFi
network. Specifically, the major contributions of this paper
are:

e We design a wireless “subprotocol” called latency
shift keying (LSK) that uses changes in latency to
send data on a network. LSK is implemented only in
software and requires no changes to WiFi hardware.
LSK allows communication between a wireless and a
wired device (or two wireless devices), even through a
secure WiFi network. LSK is a general-purpose modu-
lation scheme that can be used to transmit arbitrary
data.

e We design an application called Wicket, that uses LSK
to allow a WiFi IoT sensor to send data to a wired en-
tity on a secure network. Wicket provides a bridge
between the untrusted IoT sensor and the trusted net-
work. Since LSK offers its own communication channel
outside of WiFi while still using WiFi, Wicket creates
new security associations between unassociated de-
vices and devices on the trusted network.

e We implement Wicket and LSK on commodity hard-
ware and characterize their performance. We demon-
strate the use of Wicket in a variety of environments.
We show that Wicket is scalable and robust to other
network traffic, and has little impact on network per-
formance. We open-source our protocol on GitHub [22].

Our system constitutes a drop-in replacement for current
IoT WiFi sensors, allowing data to be sent without completely
trusting the sensor, fixing a fundamental problem with WiFi’s
security trust model.

2 MOTIVATION

Users want to connect an IoT sensor to their home network
without the risk of that device getting compromised and
compromising their network. This is at odds with WiFi’s
security association which gives a device complete access
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to the network once connected. LSK and Wicket are geared
toward devices that send little amounts of data, such as a en-
vironmental sensor. It is designed to be used in applications
where receiving data from an unassociated WiFi sensor is
worth the increased cost of energy to transmit and load on
the network. An example of this use case would be the de-
ployment of WiFi sensors into homes for research studies. In
this case the sensor deployment is temporary, and the ability
to receive data without permanently adding the device to the
network would be beneficial. Furthermore, the sensor may
be powered externally via wall power, making the additional
energy cost to send the data acceptable.

Approaches exist that allow network managers to parti-
tion untrusted IoT sensors into their own network [7]. How-
ever, these methods have serious drawbacks that make them
unfeasible for typical residential consumers to adopt. In this
section, we discuss a commonly used approach to solve the
IoT device trust problem and how this approach compares
to our proposed solution. We discuss other research related
to LSK in Section 7.

The conventional way of preventing an untrusted device
from compromising a network is to create two networks: one
network for untrusted devices and another for trusted de-
vices. A network manager sets up a WiFi network with two
advertised SSIDs. Traffic coming from the different SSIDs
are tagged with separate VLAN tags, preventing traffic from
mixing. The separate VLANs prevent untrusted devices from
accessing the trusted devices. Even if an untrusted device
does get compromised, it will only be able to affect the de-
vices on its same network, limiting the scope of an attack.

The major drawback to the above approach is that it re-
quires a network setup that is not feasible for a typical per-
son. Some consumer-grade WiFi equipment cannot broad-
cast multiple SSIDs and most cannot perform VLAN tagging.
Even if the hardware is capable, it requires advanced net-
working knowledge to set up and maintain. Since applica-
tions on a network typically do not have access to modify the
configuration of the router, it is difficult to abstract away this
complexity from the user through automation. Using this
approach takes additional effort and configuration to prevent
devices from accessing the Internet; otherwise, the device is
still vulnerable to attacks. Even with the untrusted devices
partitioned to a separate network, a device can still be used
as a botnet node in a DDOS [20]. Also, this solution is error-
prone. If a user forgets to use the special untrusted network
to connect a device, then the whole network can be com-
promised. Lastly, researchers have shown that monitoring
wireless signals can determine behavior in a home [27, 36, 37].
If a compromised device is allowed to connect to the Internet,
it can still cause damage or invade privacy, even if it cannot
access your protected network. While all of these problems
can be overcome through network configuration, they can
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Figure 2: An example of encoding data into the latency
of a wireless network.

not be automated and require much work and configuration
from the user.

Our approach does not suffer from the same problems.
It creates a communication channel on top of the existing
WiFi network, requiring little setup or hardware. A key in-
novation is that our solution is a software application and
does not require direct access to the networking stack or the
ability to modify access point configuration. As a result, our
solution excels in deployability, meaning that it can be easily
automated by the user applications. Each untrusted device
creates a unique communication channel with a node on the
trusted network. The communication channel allows each
device to set up its own security association with the node
on the trusted network, partitioning each untrusted device
into its own virtual network. Our solution essentially creates
an air gap between the untrusted device and the rest of the
network, preventing the device from connecting to the In-
ternet or communicating with the network, unless explicitly
allowed by the network.

A user could also invest in alternative wireless protocols
designed for IoT sensors, such as ZigBee or ZWave. These so-
lutions require a hub that bridges from the wireless network
to the home’s IP network. This solution can provide isolation
for the IoT devices at the cost of requiring extra hardware.
Our solution, on the other hand, requires no extra hardware
and leverages the massive popularity and low-cost hardware
of WiFi. Our design also allows for flexibility. If a user trusts
the device or is not worried about being compromised, then
they can still connect the WiFi device to their network using
normal means. Wicket does not preclude people from using
the device as a standard WiFi sensor.

3 LATENCY SHIFT KEYING

The key insight into LSK is that though an untrusted or
unassociated device can not directly send data to a trusted
WiFi network because of WiFi’s security model, it can still
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Figure 3: Overview of the Latency Shift Keying Com-
ponents.

impact the wireless environment of that trusted network. This
is because WiFi is broadcast in nature and though a WiFi
network might have separated networks, devices still share
the underlying RF medium. By having the untrusted device
change the environment in a predictable way to send data,
a participating device on the trusted network can monitor
the environment and decode the data, even from a wired
connection. In the case of LSK, we use latency as the way to
measure the impact on the network. An example of our ap-
proach is shown in Figure 2. Spikes in latency, caused by the
transmitter, convey a one and normal latency conveys a zero,
as shown in red letters. This method side-steps conventional
WiFi security, creating a new side channel of communication
outside of the scope of WiFi security while still using standard
WiFi hardware. We use this novel communication channel to
create a new network for untrusted IoT WiFi devices where
a device can send data to the network without giving the
device access to the WiFi network, which we call Wicket.
We acknowledge that this approach fits best with devices
that only need to send small amounts of data occasionally,
however, this represents a large group of devices types and
use cases.

In this section, we describe the details of the general-
purpose modulation scheme, LSK. In the next section, we de-
scribe the details of Wicket, the application that uses LSK to
provide network segregation between trusted and untrusted
WiFi devices.

LSK requires three components: a transmitter, a receiver,
and a ping reflector. These entities are shown in Figure 3.
The LSK transmitter is a WiFi sensor that is not fully trusted
to connect to the WiFi network. It deterministically induces
latency on one device on a WiFi network to encode its data.
The LSK receiver is a wired device on the trusted network.
It monitors the latency of the network, looking for encoded
messages in the latency. As stated earlier, the LSK receiver
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can be wireless, but to demonstrate the versatility of LSK, we
assume the LSK receiver is wired. This demonstrates LSK’s
ability to work between two different domains, Ethernet and
WiFi. Finally, the ping reflector is a device that is used by the
receiver to measure the latency of the network. This device
needs to be wireless and respond to ping packets. Other-
wise, the ping reflector is oblivious to the protocol. LSK is
implemented purely in software, so it does not require modi-
fications to a device’s hardware or firmware. The following
sections describe the design of the transmitter, receiver, ping
reflector, and how the data is encoded in the latency.

3.1 Transmitter

At a high level, the transmitter needs to cause an increase
in latency on the network in a specific timed pattern that
the receiver can measure. To achieve this, our system takes
advantage of the insight that an untrusted device can cause
latency on a trusted network, even while not being part of the
network. There are many ways for an untrusted device to add
latency to a WiFi network. The simple act of transmitting
on the same channel as the WiFi network can cause a slight
delay on the network. However, for this approach to work
well, the delay needs to be more pronounced and consistent.
We consider three methods for increasing the latency of a
network: 1) naive jamming, 2) using 802.11 clear-to-send
(CTS) frames, and 3) using 802.11 NULL frames.

3.1.1 Naive Jamming. Naive jamming relies on WiFi’s car-
rier sensing multiple access (CSMA) protocol to induce la-
tency on a network. By having a jamming device transmit a
frame, the target network must wait for the transmission to
be over plus a random back-off. If the jamming device sends
enough frames, competing for airtime with the nodes on the
wireless network, it will have a measurable impact on the
network’s latency. While this approach is the simplest, it has
two major drawbacks. First, it requires a constant stream
of transmissions by the transmitter to make a noticeable
impact on the network. This increases the burden on the
transmitter. Second, naive jamming slows down the whole
network. Slowing down the whole network is a big price
to pay for allowing one device to transmit data. While it is
feasible to implement LSK using this approach, it is not very
practical.

3.1.2  Clear-to-send (CTS) Frames. Request-to-send (RTS)
and clear-to-send (CTS) frames are used by a WiFi station
and an access point (AP) to get exclusive access to the channel
to transmit [17]. The typical procedure goes as follows. A
WiFi station that wants to transmit sends an RTS frame to
an AP. To grant exclusive access, the AP transmits a CTS in
response. All nodes on the same channel as the network that
receive this transaction must not transmit on the channel
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Figure 4: Round trip time for Nodes 1 and 2, with NULL
frames directed at jamming Node 1. Node 2 is unaf-
fected by the NULL frames.

for the duration specified in the RTS/CTS frame. For our
context, the LSK transmitter can inject an RTS frame into
the network even when it is not associated with the network,
asking the AP for access. The AP will broadcast a CTS to
all nodes within range of the AP. We considered having the
transmitter inject its own CTS into the network, but by using
an RTS and involving the AP, we are able to increase the
range of the CTS transmission. This method has been used
by others to clear the channel [23]. This method compared
to the naive approach, reduces the burden on the transmitter
requiring only one transmission to clear the channel for a
certain amount of time. The duration field of the CTS is
limited to 32.767 ms [2], so the effect a CTS frame can have
is limited. This approach also has the same drawback as the
naive approach: a CTS frame negatively impacts the whole
wireless network, slowing all nodes.

3.1.3 NULL Frames. NULL frames are a special type of data
frame described in the IEEE 802.11 standard [2] with an
empty payload. One of their commonly used purposes is to
notify an AP that a WiFi station is going into power saving
mode [17]. The AP will buffer the frames that it receives
on behalf of the device until the device wakes up and sends
another NULL frame to indicate to the AP it has woken up.
As part of this process, the AP advertises what stations it
has buffered frames for in its beacon frame. Since the frame
contains no payload and 802.11 headers are not encrypted,
it is easy for another device to spoof a NULL frame [18].
Using NULL frames, the transmitter can inject a spoofed
NULL frame targeting a legitimate device on the network.
The AP will start buffering the frames for that device. The
key insight into using a NULL frame, as opposed to a differ-
ent technique, is that a NULL frame only affects the latency
of one device. To show this is the case, we perform an ex-
periment where we ping two devices while sending NULL
frames targeting one of the devices. The results are shown
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in Figure 4. Node 1 is the gray line and node 2 is the blue
line. We send NULL frames targeting node 1 while pinging
both nodes 1 and 2. The latency of node 1 is severely affected
by the NULL frames, showing high spikes in latency as a
result of the NULL frames, whereas the latency of node 2 is
unchanged. Around packet number 1750, we stop sending
NULL frames to node 1, at which time, the latency follows
the same pattern as node 2.

Using NULL frames minimizes the impact LSK has on
other traffic on the network because it only affects the one
device the transmitter is spoofing NULL frames for, in this
case, the ping reflector. We can jam one device independently
of any other device on the network. Using this ability, we
can create multiple orthogonal communication channels by
jamming different devices on the network. For example, mul-
tiple transmitters can target different ping reflector devices
and create multiple parallel LSK streams of data. We discuss
multiple transmitters in more detail in Section 4.3.

The transmitter encodes data in the network’s latency
by strategically injecting NULL frames that target the ping
reflector. However, even with using NULL frames and all of
the benefits this frame provides, they are not sufficient to
reliably encoding data in the latency of the network. The sys-
tem must overcome the problem of premature “unjamming”
of the ping reflector.

3.1.4 Premature Unjamming. As part of the 802.11 speci-
fication, APs send out beacon frames every 102.4 ms. As
mentioned previously, one of the fields of the beacon frame
is a list of all of the stations the AP has buffered frames
for. While a transmitter is encoding its data in the latency
by injecting NULL frames, the ping reflector might receive
a beacon frame, because it is not actually in power-saving
mode. The ping reflector will see that the AP has buffered
frames for it, and request the buffered packets from the AP,
undoing the transmitter’s jam prematurely. This leads to un-
predictable spikes in latency since sometimes the jamming
will terminate early.

To address this challenge, we embrace beacon frames and
use them as a synchronization mechanism. Before send-
ing NULL frames, the transmitter enters monitor mode [4],
which lets it sniff the WiFi frames of the secure network. As
soon as it detects a beacon frame, it sends out a NULL frame,
maximizing its ability to jam the device. Before the end of the
beacon interval, the transmitter sends a NULL frame to the
AP requesting packets to be sent to the ping reflector. Using
the beacon frame to synchronize prevents potential issues
with clock drift between the transmitter and the receiver. We
use the time between beacon frames as the basic building
block to encode data into the latency. As shown in Figure 5,
we encode one peak between two beacon frames. We give
more details about how we encode the data in Section 3.4.
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3.2 Receiver

To receive the data sent by the transmitter, the receiver must
be able to measure the impact of the transmitter on the
wireless environment. To do so, the receiver picks a wireless
node on the network, called the ping reflector, to measure
latency against. It is important that the ping reflector is
wireless so that the latency of the ping packets reflects the
changes caused by the transmitter. The receiver periodically
sends ping packets to the ping reflector, tracking the latency
of the network. The details about how the receiver uses the
latency measurements to decode the data are explained in
Section 3.4.

The receiver has different characteristics compared to typ-
ical RF receivers that provide a unique challenge in the con-
text of monitoring latency. In the case of our receiver, the
signal-to-noise ratio (SNR) is different from a traditional RF
receiver. In our system, the noise is the natural latency of
the network. The higher the natural latency of the network,
the higher the noise of our system. The signal is the ability
of our system to create a spike of latency above the natural
latency (i.e., noise floor). The ratio of the latency spike to the
natural latency of the network is our SNR.

3.2.1 Pinging Method. We consider two options for mea-
suring the latency of the network. The first is using the
ping utility. This method sends an ICMP echo request to
the ping reflector and the ping reflector responds back with
an ICMP echo response. The receiver measures the round
trip time to measure the latency of the network. Because of
the popularity of the ping utility and its potential for use
in attacks [26], some devices have blocked ICMP traffic or
network administrators might rate limit these packets [34].

To avoid this problem, we use TCP SYN packets instead.
This method is the default scanning approach to the Nmap

tool [30]. The ping reflector will either respond with a SYN/ACK

if the port is open or RST if the port is closed. We measure
the time from when we send the TCP SYN packet to when
we hear a response. This method side-steps the problem with
ICMP traffic and allows us to ping at any rate we would like.

3.2.2  Effective Pinging. Unlike traditional receiver systems,
sampling the channel is not a benign operation, which makes
our system challenging. A typical receiver’s sample rate is
limited by its hardware capabilities. However, in our system,
the sampling rate is limited to the network capacity, and sam-
pling the channel too often can cause adverse effects on the
network. Since each “sample” causes two packets to be sent
on the network (ping request and ping response), sampling
too often will cause congestion, thus increasing the latency
of the network. If the receiver samples too aggressively, it
will jam itself. The limiting factor for our system is not how
fast we can sample the network (send pings), but how often
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we can sample the network without causing a negative effect
on the network. We discuss the rate at which we send pings
in Section 5.

3.2.3 Parallel Pings. Traditional RF receiver systems typi-
cally have a constant sample rate, however, our system does
not have that benefit. If we send a ping and wait for its re-
sponse (i.e., sample the channel), then our sample rate will
change depending on the latency of the network. When the
latency is low, our sample rate will be faster and when the
latency is high, our sample rate will be slower. To alleviate
this problem, we send and receive pings in parallel. By not
blocking each ping on the reception of the previous one,
we can send pings at a constant rate. Each received ping re-
sponse is aligned with its corresponding sent ping to provide
a high-fidelity representation of latency over time. To do this,
we overload the use of the TCP sequence number as a way of
providing a unique ID. The insight for this to work is that the
responding TCP device responds back with an ACK number
that is one more than the sequence number, allowing us to
overload its meaning and keep its value between the request
and response without adding any logic to the ping reflector.
When a TCP SYN packet is sent, a random sequence number
is inserted into the packet. The response TCP SYN/ACK or
RST packet contains an ACK number with the random num-
ber, incremented by one. The receiver matches the response
with the corresponding request ID and measures the round
trip time. By doing so, we can provide a more consistent
sample rate to the receiver.

3.3 Ping Reflector

The purpose of the ping reflector is to have a wireless device
that allows the receiver to measure the latency of the wireless
network. The ping reflector can be any wireless device that is
already part of the network. The ping reflector is unaware of
LSK and its only purpose is to respond to ping requests. Using
a third device is an approach used by others, such as Amazon,
to create an application called “Wifi Simple Setup” [8]. We
show in Section 6 that the jamming on the ping reflector has
very little impact on its overall throughput.

3.4 Data Modulation

Encoding data in the latency of a network presents exciting
challenges due to the interdependence between the various
modulation parameters. Figure 5 illustrates a single con-
trolled spike in latency that is created by injecting a pair of
NULL frames. The top graph shows the jam from the latency
domain while the bottom graph shows the same jam from the
number of received packets domain. The latency increases
from the baseline I, to /; at time ¢;, which corresponds to
the first NULL frame. Latency decreases back to the base-
line over the duration of the jamming interval T; (top graph
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Figure 5: The effect of NULL frame jamming on the
network latency and the number of RX pings per mil-
lisecond, over the course of a single beacon interval.

of Figure 5). This triangle shape makes it harder to detect
using conventional signal processing techniques. To solve
this problem, we instead use the number of pings received
per millisecond (bottom graph of Figure 5). This creates a
sharp spike after the jamming occurs. When the network
is un-jammed at t, all buffered pings are received in less
than 1 millisecond, and we can observe the spike in received
traffic due to the jamming as a single data point n,, occurring
at time t,. This method provides a more time-deterministic
representation of the modulated latency, and is used by the
receiver and decoder, as described in Section 5.

3.4.1 Signal to Noise Ratio (SNR). We observe that the signal
to noise ratio (SNR) of our system in ideal conditions would
be represented as the ratio of n,/ny. Since n; represents the
number of buffered packets over T}, all received within 1
ms, we can maximize the SNR by increasing T;. However, as
discussed in Section 3.1.4, if T; exceeds the beacon interval,
the ping reflector will automatically become un-jammed at t3.
We maximize the SNR in a single beacon interval by selecting
T; to be as large as possible without interfering with the next
beacon.

3.4.2 Encoding. If one bit were sent per beacon interval,
and every attempt to jam the channel is successful, then we
would achieve a data rate of Wg’itms = 9.76 bps. However,
there are network phenomena that interfere with this en-
coding scheme and cause an unpredictable degradation of

SNR. Data can be buffered naturally by either the router,
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ping reflector, or the networking stack on the receiver, re-
sulting in latency spikes not triggered by an LSK transmitter.
The NULL frames are injected into the network without any
guarantee of being received by the access point, and are oc-
casionally missed, resulting in a missing latency spike for a
given beacon interval.

To increase the overall SNR of our system, reduce bit er-
ror, and deal with naturally occurring latency spikes in the
network, we encode data using a pseudo-noise (PN) code
similar to direct sequence spread spectrum. The transmitter
and receiver share the code that is used to encode/decode
the data. This provides coding gain to our system allowing
us to decode data in spite of a capped SNR and external net-
work interference. In this context, the transmitter encodes
the data by multiplying a stream of data with the PN code.
To send a binary one, the transmitter sends the PN code and
to transmit a binary zero, the transmitter sends the inverse
of the PN code. The PN code consists of chips, with a one
chip being the presence of high latency and a zero chip being
a normal value of latency.

We use two different PN codes, one for syncing the trans-
mission with the receiver and one for spreading the data. We
select a 31-bit maximal length sequence (MLS) code to use as
the sync word in order to give a strong autocorrelation [31]
while searching for the packet. To encode each of the data
bits to be transmitted, 11-bit Barker Codes are used to pro-
vide a balance between an adequate autocorrelation [21] and
preserving data rate.

Figure 6 shows a flow of data through the entire system.
The data, spreading code, and sync word shown in the figure
are small examples to illustrate the flow of data and are not
the actual values used in our system. The transmitter takes
arbitrary data and multiplies it by the PN code, which we
call our spread data. The transmitter prepends a sync word
to the front of the packet. The transmitter then goes through
each of the chips in the sync word and spread data. If the
chip is a one, we jam the network. If the chip is a zero, we do
nothing and wait for a chip interval for the next chip. To jam
the network, we wait for a beacon to be transmitted and then
send a NULL frame to jam the ping reflector. During this
time, the receiver is pinging the ping reflector, measuring
the pings per millisecond. It correlates the samples with the
sync word. When the sync word is detected, it switches to
the spreading code to decode the data. Using this method,
the transmitter is able to encode data into the latency of the
network and the receiver is able to decode the data.

3.4.3 Data Rate. By transmitting a single chip per beacon
interval, and using an 11-bit Barker code that generates 11
chips per bit of data to transmit, we are able to transmit a
single bit per 11 beacon intervals. This results in an overall

system data rate of % = 0.89 bps. This is slow compared
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Figure 6: Flow of data between different nodes of LSK.

to typical WiFi data rates, however, for the context of WiFi
sensors, this data rate works great. For example, a sensor that
reports data every 5 minutes would have more than enough
bandwidth to send its data. For these types of devices and
use cases, having a slow data rate is not a problem.

4 WICKET: NETWORK PARTITIONING
USING LSK

LSK is a general-purpose modulation scheme that encodes
data in the latency of the network. We next describe Wicket,
our application layer protocol that uses LSK to partition the
network for IoT devices. Since WiFi does not easily provide
fine-grained access control to devices, Wicket fills in the
gap. It allows for an untrusted WiFi device to send data to a
willing receiver on the trusted network.

The user starts the Wicket application on the receiver, sig-
naling that they want to start receiving data from a Wicket
transmitter. The receiver must first select a suitable ping
reflector. A good ping reflector is a device that is wireless
but has low variation in latency. The IP address of the ping
reflector can be provided by the user of the application, de-
termined through some other means (such as what is done
with Amazon’s “Wifi Simple Setup” [8]), or discovered auto-
matically by the receiver. Once the receiver has selected a
ping reflector, it starts sending ping messages, as described
in Section 3.2.1, to sample the network’s latency. The Wicket
application is also set up to forward the data it receives to
another node or display it.

4.1 Threat Model

The purpose of Wicket it to side step a potential security
threat of providing a network’s credentials to an untrusted
device, giving it full access to the network. In this section
we describe two threat scenarios. One where an adversarial
device connects to a network using Wicket and another

where an adversary attacks the communication between an
LSK transmitter and receiver.

By serving as a low-bandwidth channel between a sensor
and an application on the network that is expecting only a
certain data type, the ability of the new device to compromise
the WiFi network security is significantly limited. The device
is partitioned from the rest of the network by the Wicket
application that is receiving the data, so it can not contact
other devices directly. The Wicket application is designed to
only receive data from the sensor and upload it to a server.
This puts the user in control of where the data is sent by the
Wicket application. An attacker would need to compromise
the Wicket application, changing its behavior, in order to
compromise the network, which is much more challenging
compared to compromising a typical WiFi network.

In terms of an adversary attacking the communication
between an LSK transmitter and receiver, the main areas
of concern for the security of our protocol would be main-
taining the confidentiality, integrity, and availability of the
sensor data itself. If needed, the data from the sensor could
be encrypted and integrity protected to guarantee confiden-
tiality and data integrity. An attacker could compromise the
availability of the LSK data by causing network interference,
but the same threat vector applies to normal WiFi communi-
cation. LSK provides no additional security vulnerabilities
compared to typical wireless communication and standard
security practices can be used to protect the data.

4.2 Bootstrapping

The transmitter has a bootstrapping problem. How does it
know the MAC address of the ping reflector in order to try
to jam it? To solve this problem, when the receiver sends
a ping, it inserts a unique identifying source MAC address
into the Ethernet frame, instead of its own MAC address.
The transmitter goes into monitor mode which lets it receive
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Figure 7: The bootstrapping procedure for Wicket.
The ping packet contains all the information the
transmitter needs to start jamming the ping reflector.

raw 802.11 frames, looking for these unique source MAC ad-
dresses. Two key insights are required to make this possible.
First, WiFi is inherently broadcast, so even if a ping packet
is unicast, it will be broadcast wirelessly for any device lis-
tening to receive. Second, though the transmitter, who is
untrusted and not part of the secure network, can not de-
code the payload of packets since they are encrypted, it can
see the source and destination MAC addresses of packets, which
are not encrypted. WiFi does not encrypt the link layer header
information. Detecting one of these frames indicates that
to the transmitter there is an LSK receiver present on the
channel. It also gives the transmitter all of the information
it needs to know the ping reflector’s MAC address. In spite
of the receiver using an incorrect source MAC address, the
ping packets still get returned to the receiver because the
correct IP address is used.

The flow of information is shown in Figure 7. The receiver
sends a ping packet with the correct IP addresses and correct
destination MAC address, but an identifying source MAC
address. The AP inserts its MAC address into the transmitter
address of the 802.11 frame [2] and sends the packet wire-
lessly to the ping reflector. The ping reflector responds to the
ping request and sends its response to the receiver. During
the same time, the transmitter enters monitor mode, sniffing
for frames with a specific source MAC address. Once it de-
tects such a frame, it now knows the ping reflector’s MAC
address (the source address of the frame) and the network’s
AP’s MAC address (the transmitter address of the 802.11
frame). This is all of the information the transmitter needs to
know to start encoding data into the latency of the network.

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

4.3 Multiple Access Control

As mentioned previously (Section 3.1.3), sending NULL frames
to different devices acts as an orthogonal channel. We can

use this ability to provide multiple access control in two

ways, channel partitioning (using multiple ping targets) and

time division (using the same ping target). If multiple sen-
sors want to send data at the same time, then they can target

different ping reflectors with the Wicket receiver pinging

two devices in parallel. To provide channel partitioning and

time division capabilities, we develop a “packet structure”
for conveying important information to the transmitter. We

use the form, DE:AD:BE:EF:XX:YY, where DE:AD:BE:EF is

an identifier for Wicket, XX represents any unique identifier
and YY represents if the channel is already being used or
not. Together with the source address to identify the ping

reflector and the transmitter address to identify the AP, the

transmitter is able to gain detailed information about the

state of Wicket on the network. XX can be used to uniquely
identify a specific deployment or location so that if multiple

Wicket networks are deployed nearby, they can differenti-
ate themselves. This is programmed by the user through

the Wicket receiver. The receiver changes YY from 00 to 01

when a sync word is detected and the channel becomes busy.
The transmitter looks for a source MAC address with that

form and can identify how many channels are available and
which channels are currently being used. If all the channels

are full, multiple transmitters can also be multiplexed in time

using the YY field as a way to know if the channel is busy.
For example, once a channel moves from busy to empty, the

transmitter can wait a random back-off and if the channel is

still not being used, can start sending its data.

Depending on the needs of the transmitters, a single ping
reflector can handle multiple devices. If the channel is too
busy, additional ping targets can be added to provide addi-
tional channels. Using the destination MAC address as a way
to pass information to the transmitter provides much flexi-
bility for Wicket to adapt to the needs of the WiFi sensors
and network.

5 IMPLEMENTATION

5.1 Transmitter

We select the Espressif ESP32 development board as our
Wicket transmitter because it is a popular WiFi SoC for IoT
devices, provides a bare metal system to get more accurate
timing characteristics, and provides a direct API for the WiFi
module. Since the transmitter needs to send the NULL frames
timed relative to the beacon, with response times less than
10 ms, a real-time system must be used. In a traditional op-
erating system, the delay from when a beacon is received
by the WiFi chipset and it is processed by the application is
non-deterministic and often larger than the 10 ms window
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that we need. By utilizing the ESP32, our transmitter appli-
cation can run bare metal and provide the precise timing
required to induce buffering on the network in a consistent
manner. The data to be transmitted is first spread into an
array containing the 1’s and 0’s for each chip in the 31-bit
MLS sync word, followed by chips of 11-bit Barker codes for
each of the application data bits to be transmitted.

Prior to transmission, the ESP32 sniffs all visible packets
in the air, searching for the Wicket code word in the source
MAC address, as described in Section 4. When the code word
is detected in a packet, it is assumed that the packet is a valid
TCP packet being sent to the ping reflector to be spoofed. The
transmitter then uses the destination MAC address from that
packet as the source address in a new NULL frame packet.
The destination MAC address for this new packet is the MAC
address of the AP, which is also obtained from the sniffed
packet.

The transmitter then begins a state machine that is trig-
gered by the reception of each beacon frame. A timer is also
used to trigger the state machine in the event that one or
more beacons are missed. This results in very precise tim-
ing that allows us to synchronize the injection of the NULL
frames and have precise control over the introduced latency.
The state machine is initialized with a pointer to the first
bit in the encoded data to transmit. For each iteration, the
following actions are taken: 1) If the current bit to transmit
is a ‘1’, transmit a NULL frame triggering the AP to start
buffering frames for the ping reflector. Delay for T; ms, then
send another NULL frame to release the buffered frames.
Increment the data pointer. 2) If the current bit to transmit is
a ‘0’, then do nothing, increment the data pointer, and wait
for the next state machine iteration. The jamming interval
T; is selected to be 80 ms, as that provides an adequate SNR
while not risking interference from the next beacon.

5.2 Receiver

The receiver is implemented in Python using a Linux-based
laptop computer, connected via Ethernet to the WiFi router.
A ping interval At, of 5 ms between pings is selected for
our implementation, which strikes a balance between high-
fidelity latency sampling and SNR while not adding too much
load to the network.

The receiver measures the network latency by using the
Python multiprocessing and scapy [11] libraries in the follow-
ing way. First, two processes are started. One of the processes
is used to monitor all traffic on the Ethernet interface. The
second process sends TCP SYN packets to all the ping re-
flectors, with a 5 ms delay between packets. As responses
come back to the receiver, the first process matches each
TCP SYN packet with the corresponding TCP RST packet (or
SYN/ACK packet if the port is open) based on the sequence
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number, calculating the round-trip-time (RTT). This data is
then sent to the decoder for processing.

5.3 Decoder

The decoder begins by constructing a new 2-dimensional ar-
ray with the first dimension consisting of 1 ms intervals that
span the duration of the capture. Then, for each interval, the
number of response TCP packets received within the interval
is recorded in the second dimension. To make correlation
easier, the data set is then further conditioned by taking a
rolling variance across the data. Using variance provides a
stronger impulse response when the latency increases due
to our jamming.

There are two correlation operations that need to happen
to decode the LSK message: sync word and message pay-
load. Both the sync word and the message payload codes
are individually correlated with the smoothed variance data.
After correlation is performed for both codes the data for
each is zero meaned. The decoder synchronizes if the sync
word correlation data exceeds a threshold of two times the
standard deviation of the data. If synchronization occurs, the
data can be demodulated from the Barker code correlation
data.

When the payload data is modulated it is synchronized
with the beacon intervals of the AP. This eases the demod-
ulation of the data since we do not worry about our ping
interval and transmitter jamming getting out of sync. From
the point of synchronization of the sync word, the Barker
code correlation data is sampled every 102 samples since
the data is broken into 1 ms windows and beacon frames
come every 102.4ms [2]. At each sample point, the demodu-
lation algorithm adaptively adjusts where it samples based
on nearby peaks in correlation to adjust for sampling jitter.
Data bits are then determined based on whether the correla-
tion value is above or below zero, one being above and zero
below.

6 EVALUATION

We evaluate our protocol in several ways to understand its
flexibility and reliability. For most evaluation, we evaluate
Wicket since it tests the whole system which uses LSK. By
evaluating Wicket we are also evaluating LSK.

6.1 Evaluation Setup

To verify the performance of Wicket and LSK, data is sent
from the transmitter to the receiver, and the received data is
compared against the expected data to generate a bit error
rate (BER). To demonstrate that our system is not dependent
on input data, 10 randomly generated 32-bit sequences are
used as payloads to transmit. The size of the data payloads
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was selected to represent a single packet containing com-
pressed sensor data. A test consists of each of the 10 sets
of data being sent from the transmitter to the receiver, and
the calculated BER for each data set is averaged together to
provide a single result for the test.

Evaluation was performed in a home WiFi environment
with interference levels typical of a residential IoT sensor
application. WiFi channel 11 is selected for testing. As dis-
cussed in Section 6.3, The baseline channel utilization rate
as reported by the access point is approximately 20%.

For the tests used in the evaluation, channel utilization
is measured by monitoring the QBSS Load Information El-
ement (IE) of the beacon frame, which reports the channel
utilization rate as an 8-bit value. This was averaged together
over 1-second intervals, and collected for the duration of
each test.

6.2 Interoperability With Various WiFi
Routers

We design Wicket and LSK to not require any custom firmware

or manufacturer-specific features of the WiFi router, relying
on core features of the 802.11 protocol. As such, we expect
that Wicket should perform well on a wide variety of WiFi
routers. To test this, we verify that our protocol can be run
using three different routers, as shown in Table 1. We select
these routers because they represent a broad spectrum of
router capabilities, brands, and costs. In all cases, our proto-
col consistently achieves a bit error rate of zero on all three
routers under typical conditions. This shows that our proto-
col utilizes fundamental WiFi features and is not dependent
on router or protocol behavior.

6.3 Effect of Existing WiFi Network Traffic
on Wicket Performance

As discussed in Section 3.4, buffering in an LSK network oc-
curs not only as the result of the NULL frames injected by the
transmitter but by naturally occurring network conditions
as well. In WiFi environments with low network load, nearly
all buffering is caused by the transmitter. However, when the
network is more congested, buffering may occur naturally
on either the AP or the ping reflector. In both cases, this can
interfere with the timing of the LSK-induced buffering and
introduce bit errors into our communication. This section
evaluates at what point external network congestion will
degrade the LSK communication channel.

To measure this, the WiFi network is loaded with traf-
fic in a controlled manner using iPerf [15]. While iPerf is
typically used to measure the maximum throughput of a
network, it also allows an input argument to specify a target
throughput to test and will maintain that throughput consis-
tently through the duration of the test. An iPerf server was
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Router Model WiFi Version | Cost
Linksys MR7500 WiFi 6E $230
Netgear Nighthawk AC2600 | WiFi 5 $154
TP-Link Archer AC1200 WiFi 5 $40

Table 1: A table of routers used for testing, with their
WiFi version and cost.
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Figure 8: Effect of network congestion on the bit error
rate (BER) of LSK communication

launched on a test computer connected to the WiFi router
via Ethernet, and an iPerf client was launched on a device
connected to the 2.4 GHz WiFi network. This topology al-
lows us to place a controlled load on the 2.4 GHz network
simulating external network traffic.

The channel is first characterized by running iPerf at max-
imum speed, which for this evaluation indicates a maximum
channel capacity of 80 Mbps. A series of tests are then per-
formed while the iPerf client streams data at 10 Mbps, 20
Mbps, 30 Mbps, and so forth up to the point where the Wicket
communication is observed to break down. The baseline
channel utilization rate with no Wicket communication and
no iPerf load is 20% as reported by the AP. Because the ob-
served channel utilization is not constant but varies by up to
15% over time, the test results are grouped by the observed
utilization rate from when each data set is recorded.

Figure 8 shows the distribution of test results of Wicket for
each of the observed utilization rates. It can be seen that for
the topology and encoding used, the data was successfully
received up to a 60% utilization rate. Since WiFi networks
are typically designed such that the target airtime utilization
remains below 50-60% [13, 33], these results demonstrate
the ability of Wicket to perform well in a wide variety of
network loading conditions. Except for the most extreme
networks, Wicket will perform with very low bit error.
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sult of a single LSK transmission

6.4 Effect of Wicket on Network
Performance

Because Wicket is intended to be used on existing WiFi
networks, it is important that the protocol does not place a
disproportionate load on the network or otherwise slow it
down for other devices. We evaluate the effect of Wicket on
the device being pinged and the network utilization rate.

6.4.1  Effect on Ping Reflector Network Performance. Figure 9
shows the average latency (bottom graph) and the total TCP
packets received per second (top graph) over the course of
a single Wicket transmission. While the jamming by the
Wicket transmitter increases the average latency by about
25 milliseconds, it is noted that the number of TCP packets
received per second remains the same during transmission
and afterward. This highlights the fact that LSK causes only
minor increase in latency, and the overall network perfor-
mance of the ping reflector is not impacted in a way that
would significantly degrade most applications.

6.4.2  Effect on Utilization Rate. To evaluate the effect of the
Wicket protocol on the utilization rate of a WiFi network as
a whole, we compared the channel utilization rate measured
on an idle network to that measured while a single device
was transmitting. In both cases, the utilization rate reported
by the AP was recorded over 45 seconds.

The test results are shown in Figure 10, and indicate that
for a single transmitter/receiver running Wicket, the mar-
ginal network load is about 1%. This is not surprising, since
the TCP packets are less than 60 bytes. Considering both the
TCP SYN and RST/ACK packets, which are sent over the 2.4
GHz WiFi network every 5 milliseconds, this only consti-
tutes 0.192 Mbps of load placed on the network. While our
utilization is potentially higher than most WiFi sensors, the
ability to protect a network from an untrustworthy sensor
can be worth the cost of slightly extra utilization.
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6.5 Wicket Performance at Various Ranges

Because Wicket is intended to be used in wireless applica-
tions, in this section we evaluate the effect of range between
the transmitter and access point (AP). For this evaluation,
we assume that the ping reflector device has been selected
to have a solid and reliable connection to the access point.

Since in wireless communication, multi-path and line-of-
sight obstructions can interfere with physical range measure-
ments, received signal strength as seen by the transmitter
is used. The ESP32 transmitter is connected to a Raspberry
Pi test device. The ESP32, upon receiving beacons from the
access point, measures the RSSI and reports it to the Rasps-
berry Pi, which sends it as an MQTT message to the test
computer. For each test iteration, the transmitter is moved
farther away from the AP, the RSSI as seen by the transmitter
is logged, and the results are grouped by RSSI.

The results are given in Figure 11, and indicate strong
Wicket performance until an RSSI of about -60 dBm. It should
be noted that upon inspection of the raw data, this appears
to be about the point where the AP stops seeing the NULL
frames sent by the ESP32. Given that the ESP32 continued
to receive the AP beacons and report RSSI, it may be con-
cluded that the drop-off in performance is likely caused by a
limitation in transmit power on the transmitter.

6.6 Scaling to Multiple Wicket Devices

To show that Wicket is viable for multiple sensors on one
network, the test setup is expanded to support multiple trans-
mitters running in parallel, communicating with a single
receiver as described in Section 4. Figure 12 shows the av-
erage bit error rate (BER) of tests run with 1, 2, 3, and 4
devices transmitting simultaneously. We stop at four concur-
rent transmitters because of the lack of equipment to test
more than four nodes. The results demonstrate consistently
low bit error rates even as additional concurrent transmis-
sions are added. This is to be expected from the finding in
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Section 6.4 that each transmission adds less than 1% to the
network utilization rate. This evaluation validates the use
of multiple transmitters and indicates that devices can be
added to a Wicket network at minimal cost.

7 RELATED WORK

As mentioned in Section 2, advanced WiFi systems can be
set up to partition networks between a trusted network and
an untrusted network. However, this requires advanced net-
working knowledge and equipment.

Much work, both commercially and academically, has been
done to improve the ease of connecting a device to a WiFi
network. Such efforts include WPS [1], Espressif’s Wi-Fi
Easy Connect [5], and Secure Transfer of Association Proto-
col [28]. These technologies work by creating a secondary
channel to provision a device unto a network. However, that
does not solve the underlying problem of trust. Once the de-
vice is connected to the network, it has access to the whole
network. Our solution is solving a problem of security/trust.

Others have created side channels for unassociated WiFi
devices to communicate. For example, some IEEE 802.11
frames, such as a beacon, or 802.11 fields, such as the source
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MAC address, can be used to insert arbitrary data (typically
called bit stuffing) [19]. However, such an approach requires
both the sender and the receiver to be wireless devices. LSK
does not require the receiver to be wireless—it works over a
wired connection as well. By allowing the receiver to be wire-
less, our system is unable to use IEEE 802.11 specific frames
or fields. Prongle [35] can be used to set up communication
between two unassociated wireless devices but it requires a
companion device. LSK does not require extra hardware and
is focused on setting up communication between an unasso-
ciated device and a secure network. Also, LSK does not require
the receiving node to be wireless. The receiving node can be
wireless or wired, meaning LSK can traverse multiple link
layer protocols. WiPush [6] provides a system for sending
push notifications from a network to an unassociated device.
LSK addresses the opposite problem: how to send data into a
secure network. ONPC [29] used beacon frames and noise
on the channel to set up communication. However, the focus
of this work was on extending the range of communication
and requires the receiver to be able to measure the noise on
the WiFi channel. LSK only requires the receiver to be able
to measure the latency of the network.

Our work has similarities to cross-technology communi-
cation protocols, such as FreeBee [24], C-Morse [38], and
E-Sense [12]. These methods modulate data in packet tim-
ings or packet lengths, rather than latency. To the best of
our knowledge, we are the first to encode data in the latency
timing of a wireless network as observed by a wired device.

8 CONCLUSION

With WiFi sensors becoming lower cost, it is easy to integrate
them into your network without giving much thought to the
potential security risk that these devices present. A rouge
device can infiltrate a network looking for weak nodes or act
as a DDoS bot. WiFi makes it hard for a device to send data
on a network without giving that device complete access to
your network. LSK is a novel way of encoding data into the
latency of a wireless network, allowing an outsider device to
send data into a trusted network. We use intricate knowledge
about the 802.11 protocol and frame types to surgically jam
one device, leaving the rest of the network unaffected. We
develop Wicket that demonstrates the use of LSK by creating
anew security association between an untrusted WiFi device
and a secure network. All innovations outlined in this work
require no changes to a device’s hardware and provide easy
integration into currently deployed systems.
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