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Abstract—The health hazard of air pollution in developing
countries poses a significant threat of cardiovascular, respiratory,
and other diseases. Ulaanbaatar, Mongolia is among cities with
the worst polluted air in the world due to the use of coal as the
primary heating source in the traditional Mongolian gers where
most of the local population resides. Humanitarian groups are
looking for ways to improve air quality, but are unable to measure
the effects of their solutions. We build a low-cost air quality
sensor that can upload data in real-time in remote locations. This
newly developed sensor allows for real-time air quality monitoring
and tracking that was not possible before in such locations. We
present the implementation and deployment of this system and
share experiences and lessons learned from deploying the sensors
in such a unique location.

Index Terms—wireless sensor networks, remote sensing, system
applications and experience

I. INTRODUCTION

Poor air quality is a problem that knows no boundaries. It
affects populations all over the world [1] [2]. Epidemiological
studies show that ambient air pollutants like PM, O3, SO2, and
NO2 are contributors to several respiratory problems including:
bronchitis, emphysema and asthma [3]. One area of the world
that is hit particularly hard by poor air quality is Mongolia.

Traditionally Mongolian families that live in gers (Figure 1)
use coal to both cook meals, as well as heat up the gers
during the winter months where temperature can drop as low
as −40° C. The burning of coal inside the ger causes hazardous
amounts of particles that are harmful to the residents of the
ger. In the winter months, 80% of Ulaanbaatar’s air pollution
is caused by households burning raw coal in stoves in ger
districts. Mongolia has a population of 3 million people, and in
2016 an estimated 1800 people died from diseases attributable
to household air pollution, and more than 1500 people died
from diseases due to outdoor air pollution [4].

Organizations such as Deseret International Charities and
the Gerhub [5] are looking for ways of improving the ger
structure to be more energy-efficient, thus requiring less coal
(or no coal) to be burned and improving air quality. Such ideas
include building new structures instead of using traditional
gers or retrofitting current gers [6]. By making the ger more

Fig. 1. A Mongolian ger where we deployed air quality sensors.

energy efficient, an electric heater can be used instead of a
coal stove. Though these solutions seemingly provide a great
benefit to the people living in the gers and the community
as a whole, no indoor air quality data has been collected in
Mongolia to measure the effects of these modifications to gers
and quantify the benefits.

Many commercial air quality sensors exist [7]; however,
deploying air quality sensors in this context requires special
considerations. First, the cost of the device needs to be as low
as possible. Since these projects are typically humanitarian-
based, there is not much money to spend on instrumentation.
Second, it is vital to be able to monitor the data in real-time.
Real-time data allows maintainers to know when the sensors
are unplugged or malfunctioning and fix the problem. Without
real-time data capability, data collection becomes challenging
(you must send someone to every sensor to download the
data off of the device), and we would not know of any
problems with the sensors until after all the data is collected.
Third, most commercial sensors that are real-time use WiFi to
upload the data. In the ger districts of Mongolia, there is no



WiFi connectivity as the residents use cellular data through
their smartphones instead. To the best of our knowledge, a
sensor that fulfills these requirements (an inexpensive real-time
sensor that uploads data through cellular) is not commercially
available.

To solve this problem, we design, build, and deploy air
quality sensors in Mongolia to collect data to help in these
humanitarian efforts. The air quality sensor we design costs
$200 to build and uses cellular connectivity to upload data
in real-time. This sensor has implications beyond Mongolia.
Our sensor can be used anywhere WiFi connectivity is not
available, such as parks, bus stops, and along roadways,
breaking the constraints that other low-cost sensors have. We
believe removing the need for WiFi is a necessary step in
allowing ubiquitous air quality sensing.

We make several contributions in this paper: First, we
present our sensor design and system architecture. Second,
since Mongolia offers a unique environment and constraints,
we share experiences we had in deploying sensors in a remote
location like Mongolia. Our experience goes beyond air quality
sensors and can help anyone who is deploying sensors in
remote areas.

The rest of the paper is organized as follows: In Section II,
we discuss related projects and air quality sensors. In Sec-
tion III, we give an overview of our sensor design and system
architecture. In Section IV, we share the challenges we faced
in deploying our sensors and lessons learned along the way.
In Section V, we share our conclusions.

II. RELATED WORK

Many commercially available air quality sensors already
exist [7]. Of particular interest are the Purple Air [8] and
AirU [9] sensors because they are low-cost (around $250
USD). These sensors have been used in a large number of
studies and have been deployed in many places around the
world [10]. However, these two sensors use WiFi to report data
in real-time. Since WiFi is not a viable option in Mongolia and
other remote locations, these sensors are not well suited. Our
deployment requires a low-cost stationary sensor that must
upload data in real-time.

There have been platforms and architectures designed to
handle air quality data, such as EpiFi [11] [12]. EpiFi is a
system designed for epidemiological research/study purposes.
It focuses on deploying sensors in homes with participants.
Since it is geared towards large scale studies, it is too elaborate
for what we are trying to achieve. However, our system could
easily be integrated into a system like EpiFi.

Other work has been done on sharing experiences and
lessons learned related to similar topics. Hnat et al. shared
their experience of residential sensing deployments [13]. They
share deployment issues including running out of wall sockets,
wireless connectivity issues, environmental hazards such as
children, pets, and robotic vacuums, participants dropping
from the study, and maintenance challenges due to combina-
tions of commercial and custom designed devices. We faced
many similar issues. Similarly, Barrenetxea et al. shared their

experience with wireless sensor network deployments [14]. We
hope to add our experience of deploying air quality sensors in
Mongolia to anyone thinking of deploying sensors in remote
locations.

Fig. 2. Our air quality sensor, with its cover off, deployed in a ger.

III. IMPLEMENTATION

“Simplicity is prerequisite for reliability.”
— Edsger Dijkstra

“Everything should be made as simple as possible, but not
simpler.”

— Albert Einstein

The goal of our air quality sensor and architecture is to
be as simple as possible. We believe that simplicity will lead
to a more reliable design. Reliability is very important since
these sensors will be deployed far from us in remote locations.
We achieve simplicity in two ways: using as few components
as necessary and by doing as little custom work as possible.
We next describe our air quality sensor design and system
architecture.

A. Air Quality Sensor

Our air quality sensor consists of five major sensor compo-
nents: particulate sensor, CO2 sensor, real-time clock (RTC),
SD card, and Particle Boron. We design a simple custom
circuit board to connect all of the components together. This
is the only custom part of our sensor and only provides
the interconnect between different components. Every other
component we used can be bought off the shelf. We discuss
each component individually:

Particulate and CO2 sensors. The particulate sensor is
the Sensirion SPS30. It measures the number of particles in
the air at different sizes. This is denoted by PMX, where X
is the size of the particle in microns. This sensor measures
four different sizes of particles: PM1, PM2.5, PM4, and PM10.
The CO2 sensor is the Sensirion SCD30 and measures the
concentration of CO2 as well as temperature and humidity.



Fig. 3. Air Quality sensors architecture diagram. Sensors readings are published to Particle Cloud, which is then sent to Google’s Pub/Sub service. Our script
pulls data from the Pub/Sub and writes it to InfluxDB.

Real-time Clock (RTC). The RTC is essential to ensure
that our sensor has accurate time even if it is not connected
to the Internet. When a sensor is connected to the Internet, it
is able to get an accurate time. However, if the sensor gets
rebooted and it is not connected to the Internet, it will have
the wrong time. Any data that is collected from the time of the
reboot to when the sensor connects to the Internet will have the
wrong timestamp. This is not a problem if the sensor connects
to the Internet instantly after rebooting. However, our sensors
are being deployed in a remote location where connectivity
might not be good, so we can not expect constant Internet
connectivity. Including an RTC improves the reliability of our
data.

SD Card. The SD card is used to store data persistently.
This is another important design decision to improve the
reliability of our sensor and the data it collects. By including
persistent storage, our sensor is able to safely store data it has
collected while it is waiting to upload the data. Without the
SD card, the sensor would store this data in non-persistent
storage (i.e., RAM), and if the sensor got rebooted, all the
data would be lost. To ensure that no collected data would
be lost, we store all readings onto an SD card first. After it
has been written to the SD card, then we upload the data to
the Internet. For our deployment, we used 16 GB SD cards,
which can store years worth of data when sampling every one
minute.

Particle Boron. The Boron is a microprocessor that inte-
grates cellular connectivity. There are two types of Borons:
3G/2G and LTE. We select the 3G/2G version because it
supports global deployment, whereas the LTE version only
supports North America. The Boron includes an embedded
SIM card that allows it to work in most countries in the world.
We discuss why we selected cellular instead of a different
wireless technology in Section IV-B. We program the Boron
to communicate with the particulate matter sensor, CO2 sensor,
RTC, and SD card through I2C and SPI interfaces. Particle,
the company that makes the Boron, also provides software to
easily upload data from the Boron to their cloud, which is done

by “publishing” the data. We use this mechanism to send our
data from our sensor to the Internet.

Data is collected from the sensors as follows: every minute
the Boron reads from each of the sensors and writes this data
to the SD card. Every ten minutes, any data on the SD card that
has not been previously uploaded gets uploaded. This approach
allows for our sensors to store data until it becomes connected
to the Internet, which is critical for intermittent connectivity.
Our sensor is shown, with the cover off, deployed in a ger in
Figure 2.

B. Architecture

Next, we discuss the architecture of our system, which
is shown in Figure 3. As stated earlier, the major focus of
our architecture is simplicity and reliability. We achieve this
by developing as few components as possible ourselves and
instead leverage other existing technologies. We want to ensure
that no data is lost between publishing the data and storing the
data in our database. There are five major components to our
architecture.

Data Ingress. As mentioned in the previous section, Par-
ticle provides the microprocessor, Boron, and the ability to
publish data from the sensor to their cloud service over the
cellular network. Using Particle’s service allows us to monitor
deployed sensors and check on their status. We are also able
to push over-the-air updates to the sensors. Particle provides
an integration into Google Pub/Sub. Any data that is sent
to Particle’s servers (through publishing the data) is sent to
Google Pub/Sub.

Data Broker. Google Pub/Sub is part of Google Cloud
services. It is a message broker that keeps the data in the
queue until data is requested (pulled). Data that is pulled
from Pub/Sub must be acknowledged before the service will
forget about the data. If it is not acknowledged, then it will
continue to store that data. This service provides two great
benefits. First, it allows us to leverage Google’s reliability and
scale. If Particle sends data directly to our server and our
server is down, then data would be lost. Pub/Sub provides



a safe and reliable place for us to put the data. Second,
it decouples the production of the data (sensors uploading
data) from the consumption of the data (storing the data in
InfluxDB). Though Pub/Sub is not required for a system like
this to work, we believe the scalability and reliability benefit
outweigh the cost.

Subscriber. This is a Python script that pulls data from
Google Pub/Sub, transforms the data, and saves the data to
InfluxDB. If the data insertion is successful, the script sends an
acknowledgment to Pub/Sub, notifying it that the data can be
deleted. This is the only custom component of the architecture
that we created.

Storage. For data storage, we use InfluxDB [15]. InfluxDB
is a popular open-source database that is designed for time-
series data, such as sensor measurements. It provides good
scalability as well as other features when working with time-
series data.

Visualization. We use Grafana [16] to visualize data that
is stored in InfluxDB. Grafana is an open-source visualization
tool that integrates with many different databases. It allows you
to set up dashboards and graphs to monitor data. It is essential
that we monitor the collected data to ensure that all sensors
are uploading data correctly and that the sensor readings look
reasonable. If a sensor is not uploading data or the sensor
readings are not reasonable, we must determine the reason
or remotely debug the sensor. We provide a public dashboard
for people in Mongolia to monitor the air quality, as well as
private dashboards for debugging purposes.

The flow of data goes as follows. Every 10 minutes, sensors
publish data to the Particle cloud. Our sensor will continue
to resend the data until it has received an acknowledgment
from Particle that the data has been received successfully.
Particle then forwards this data to Google’s Pub/Sub service.
This is set up through an integration between Particle and
Google. Our Pub/Sub subscriber checks Pub/Sub for new data.
When there is new data, it pulls the data, and inserts the
data into InfluxDB, sending an acknowledgment to Pub/Sub
that the data was inserted successfully. Data can be viewed
using Grafana to check its validity and make sure sensors
are uploading data properly. We develop a few dashboards to
analyze and compare the data being sent from the air quality
sensors. One dashboard was publicly created for the purpose
of sharing the data with the people in Mongolia, as shown in
Figure 4. We use Grafana to send us alerts whenever there is
missing data.

IV. CHALLENGES

In September 2019, we deployed 50 air quality sensors in
gers in Ulaanbaatar, Mongolia. Since that time, we have col-
lected over 5.5 million air quality samples. While designing,
deploying, and maintaining, we ran into numerous challenges.
We summarize some of the problems we faced below as well
as the lessons learned in dealing with these challenges. These
challenges are not unique to us or this type of deployment and
can be generalized to all IoT sensor deployments.

Fig. 4. Grafana public dashboard.

A. Unplugged Sensors

Since we initially deployed our sensors, there have been
several instances when deployed sensors were sending air
quality data and suddenly stopped. We were perplexed as to
why this was happening. We eventually discovered that the
participants were unplugging the sensors. This quickly became
a common occurrence. We looked through our collected data
to determine how many times our sensors were getting un-
plugged. On average, 22% of our sensors are being unplugged
very often—some on average multiple times a day. These
results are shown in Figure 5. We did not anticipate that our
sensors would be unplugged that often and had not accounted
for this in our design.

Lessons Learned. From this experience and data, we
learned two lessons. First, we should have designed the sensor
to require as little from the participant as possible. By using
their energy, we depend on them to keep it plugged in at all
times. Put another way, following Murphy’s law, ”whatever
can go wrong, will go wrong” when deploying a sensor in a
home. We could have, for example, used a small battery to
keep the sensor powered while it is unplugged temporarily.
Second, when deploying the sensors, we used one of the
participant’s power plugs. Given the nature of gers, there
are no set power outlets to plug into. Each home is wired
depending on the residents’ abilities and preferences. This
makes power plugs more transient and sparse compared to
a traditional American home. In retrospect, we should have
provided power strips so that we would not use one of the
few open outlets in the ger.

B. Cellular vs LoRa

A critical part of our whole system is the ability to upload
data from the sensor to the Internet. There are many different
approaches to this. The conventional method is to use existing
WiFi architecture, as used by Purple Air and AirU. While
this is a good approach for some contexts, WiFi is not widely
deployed in all parts of the world, so we can not require it
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Fig. 5. A histogram showing the amount of times deployed sensors get
unplugged.

Fig. 6. Potential locations to place LoRa gateways to get complete coverage
of the area where we are deploying sensors.

for our sensor to work. Using a cellular network is another
option for uploading data. While this is more widely available
than WiFi, the cellular hardware is more expensive, and using
the cellular network costs money. A third option is to use a
different wireless protocol like LoRa [17]. LoRa is a relatively
new wireless protocol that is designed to have long-range, but
with little power usage. LoRa clients upload data to LoRa
gateways, which are connected to the Internet. It is designed
to get similar ranges as cellular but without the extra cost.

In designing our sensor, we explored using LoRa because it
could potentially be lower cost than using cellular. However,
after investigating this option further, there are two critical
drawbacks to using LoRa when deploying in remote areas.
First, since there is no existing LoRa infrastructure in Mon-
golia, LoRa gateways must be deployed. In some parts of

the world (mainly Europe), LoRa gateways are available and
free to use by anyone [18]; however, in Mongolia, such a
network does not exist. To deploy LoRa gateways, it requires
knowledge about where you are deploying and to get maxi-
mum coverage, a site survey. In a typical LoRa network, range
depends on many factors such as indoor/outdoor gateways, the
type of antenna used, etc. On average, in an urban environment
with an outdoor gateway, you can expect up to 2 to 3 km wide
coverage [19]. Looking into deploying outdoor gateways with
LoRa in the area we were planning on deploying sensors, it
would require at least three gateways to get coverage of the
area. Figure 6 demonstrates potential locations to place LoRa
gateways. Since we are not local to Mongolia, it is difficult to
plan for a LoRa deployment beforehand.

The second issue with deploying LoRa gateways is its
infrastructural reliability. If a gateway goes down, all of the
sensors that are communicating with that gateway are no
longer able to upload data. Also, because of how critical the
gateway is to the LoRa network, the gateway should be placed
in a location where it has reliable power, good height (for
maximum coverage), and restricted access. Without these, a
LoRa deployment is not going to work reliably. Given these
requirements, this was not a reasonable approach for deploying
sensors in remote locations.

Lesson Learned. From doing a thorough analysis, we learn
that simplicity is the way to go. Though adding LoRa would
be cheaper in the long run, having to manage our own network
would be brittle and error-prone because there would be one
or two points of failure. By using cellular, we are using a
network that is well provisioned and managed. Each sensor is
self-contained and does not depend on another sensor. Because
of the remote location of our deployment, reliability is one of
the most important aspects of our deployment.

C. Management Tools

In developing our system and deploying our sensors, it
quickly became apparent that collecting data and storing
the data is not enough. A system like this requires many
management tools. For example, it is important to be able to
check on the status of sensors, debug sensors, visualize data,
get notified when a sensor has gone offline, etc. Some of these
tools exist already, such as Grafana, but many of them do not.
Even the tools that do exist are geared towards people with
computer backgrounds. This increases the complexity of the
system and puts a more significant burden on the maintainers
of the system. We break these management tools into different
categories and discuss them individually.

Metadata Management. When deploying sensors in a real
environment, there is a lot of additional data about each
sensor, which we call metadata. This is data that is not being
collected by the sensor but is still necessary to understand
the data that the sensors are collecting. This includes the
GPS location of the sensor, household contact information for
the ger the sensor is deployed in, the firmware version the
sensor is on, relevant information about the family (such as if
someone smokes in the house), etc. It is challenging to know



where to put this data once it has been collected and how
to correlate it with the sensor measurements. It becomes even
more challenging when this information changes. For example,
if a sensor is broken and needs to be replaced with a different
sensor, metadata must be updated in a timely manner to reflect
this change. If not, data will be attributed to the wrong GPS
location or household. To the best of our knowledge, there are
no existing tools to help sensor deployers and maintainers deal
with these challenges. Ensuring that all metadata is accurate
and up to date requires a lot of manual work by a deployer and
is often overlooked when planning out a sensing deployment.

Visualization and Data Monitoring Tools. Since there is
so much data being generated from our air quality sensors,
we need a way to aggregate all that data stored in InfluxDB
database and make some sense of it. As stated in Section III-B,
we use Grafana as that representation layer. It enables us to
create different dashboards used internally, as well as making
it available to the public to be able to see the air quality data.
Grafana allows us to check on the state of a sensor and view its
historical data. However, it quickly became untenable to check
on all of our sensors to see if they were functioning properly.
Therefore, we looked into ways to alert us when a sensor
went offline. Grafana has alerting functionality out of the box
that we could utilize in order to send alert notifications to us.
While this helped with sensors that went offline, we quickly
realized that it did not help with another class of problems:
missing data and bad data. Missing data is when not all of
the sensors of the device are working properly. For example,
with our sensor, the CO2 sensor is reporting data, but the PM
sensor might be malfunctioning and not reporting data. Bad
data is when a sensor is reporting data, but the data is not in
an acceptable range for the sensor. Though it is possible to
use Grafana to inspect the data manually, this is not scalable
to large deployments of sensors. Better tools must be created
to help deal with large deployments of sensors.

Over-the-air (OTA) Updates. OTA updates quickly be-
came an invaluable tool after we deployed the sensors and
realized there was a critical bug in the system that we had not
found in our testing. Being able to upgrade software on the
device remotely is a critical part of such a system. Luckily,
Particle provides the ability to update devices remotely, so we
did not have to write this component ourselves.

Lesson Learned. For any successful long-term deployment
of sensors, collecting data is not enough. Data collection
must be coupled with tools that help manage and monitor the
sensors. We have highlighted a few tools that exist to aid in this
area. However, there is a lot left to be desired. In particular,
there are significant gaps in metadata management tools and
data monitoring tools. We firmly believe for a deployment of
sensors to be successful, such tools, as outlined above, must
exist.

V. CONCLUSION

In this paper, we present a low-cost air quality sensor that
we develop and deploy in Mongolia. This sensor removes
the constraints of WiFi and allows for real-time air quality

data monitoring in remote locations. We present our system
architecture for processing and storing the data. We share our
experiences and lessons learned while deploying and managing
the sensors. These lessons are valuable to other researchers
who would deploy sensors in remote locations.
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